ORGANOMETALLIC FORMATE COMPLEXES OF PLATINUM(II)

M. CRESPO and J. SALES
Departament de Química Inorgànica, Divisió de Ciències Experimentals i Matemàtiques, Universitat de Barcelona, Diagonal, 647, 08028 Barcelona (Spain)
(Received October 14th, 1986)

Summary

The compounds trans- $\left[\mathrm{Pt}(\mathrm{OCHO}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{Cl}_{5} ; 2,3,4,6-\mathrm{C}_{6} \mathrm{HCl}_{4} ; 2,3,4\right.$, $5-\mathrm{C}_{6} \mathrm{HCl}_{4} ; 2,5-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$) have been prepared by treatment of $\left[\mathrm{PtIR}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with AgClO_{4} followed by reaction with NaOCHO in methanol. The cis isomers have been obtained by the direct reaction of $\mathrm{HCO}_{2} \mathbf{H}$ with compounds containing $\mathrm{Pt}-\mathrm{Hg}$ bonds. For these and the analogous compounds containing $\mathrm{C}_{6} \mathrm{~F}_{5}$ ligands, the dependence of $J\left({ }^{31} \mathrm{P}^{195} \mathrm{Pt}\right)$ on R has been studied, and the effects of cis- R shown to be in the opposite direction from those of trans-R ligands.

Introduction

The chemistry of transition metal compounds containing the formate ligand bonded in a monodentate fashion is of considerable interest because of the potential participation of such species as intermediates in the catalysis of both the water-gas shift reaction and the conversion of CO_{2} into formic acid [1]. The formate complexes also participate in the decomposition of formic acid to hydrogen and carbon dioxide [2].

The formate complexes are usually prepared by reaction of CO_{2} into a transition metal-hydrogen bond, a type of reaction showing some similarity to olefin insertion (eq. 1).
$\mathrm{MH}+\mathrm{CO}_{2} \rightleftarrows \mathrm{MOCOH}$
The reverse reaction is of interest because hydrido species can be obtained by CO_{2} elimination from formate complexes [3].

Following our previous work on organometallic platinum(II) compounds containing bulky groups such as PPh_{3} and polychlorophenyl [4], we report here the preparation of new compounds of this type containing the formate ligand. The preparation involves a new method consisting of treatment of a compound containing a $\mathrm{Pt}-\mathrm{Hg}$ bond with formic acid.

Results and discussion

Some platinum formate complexes have been obtained previously by metathesis involving formate ion [5] (eq. 2).
$\mathrm{PtX}+\mathrm{OCHO}^{-} \rightarrow \mathrm{PtOCHO}+\mathrm{X}^{-}$
It is well known that organometallic platinum compounds $\left[\mathrm{PtXRL}_{2}\right]$, in which \mathbf{R} is a bulky ligand, are difficult to obtain by classical methods such as the use of Grignard or organolithium reagents. The required starting halogeno complexes were prepared by the action of KI in acetone on the compounds [$\mathrm{Pt}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}$] ($\mathrm{R}=\mathrm{C}_{6} \mathrm{Cl}_{5} ; 2,3,4,6-\mathrm{C}_{6} \mathrm{HCl}_{4} ; 2,3,4,5-\mathrm{C}_{6} \mathrm{HCl}_{4} ; 2,5-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$), which were obtained by treatment of the compounds [$\left.\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{RPtHgR}\right]$ with trifluoroacetic acid [4]. The compounds $\left[\mathrm{PIIR}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ as well as the $\left[\mathrm{Pt}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ have a cis configuration when R has two chlorine atoms in ortho positions $\left(\mathrm{C}_{6} \mathrm{Cl}_{5} ; 2,3,4,6-\mathrm{C}_{6} \mathrm{HCl}_{4}\right)$, and exist as a mixture of cis and trans isomers when R has only one chlorine atom in the ortho position ($2,3,4,5-\mathrm{C}_{6} \mathrm{HCl}_{4} ; 2,5-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$) as revealed by the ${ }^{31} \mathrm{P}$ NMR data in Table 2.

Treatment of $\left[\operatorname{PtIR}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with AgClO_{4} in methanol followed by reaction with NaOCHO in methanol leads to the formate complexes $\left[\mathrm{Pt}(\mathrm{OCHO}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right]$.

$$
\begin{align*}
& {\left[\mathrm{PtIR}\left(\mathrm{PPh}_{3}\right)_{2}\right]+\mathrm{AgClO}_{4} \xrightarrow{\mathrm{MeOH}}\left[\mathrm{Pt}(\mathrm{MeOH}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4} } \tag{3}\\
& {\left[\mathrm{Pt}(\mathrm{MeOH}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}+\mathrm{NaOCHO} \rightarrow } \\
& \quad \operatorname{trans}-\left[\mathrm{Pt}(\mathrm{OCHO}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right] \tag{4}
\end{align*}
$$

The configuration is trans for all the formate complexcs obtained, even though the iodide complexes have a cis configuration and so there must be an isomerisation during the reaction. A similar result was reported by Venanzi in the preparation of trans- $\left[\mathrm{Pt}(\mathrm{OCHO})\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]$ from cis- $\left[\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right][5]$.

This general method for the preparation of formate complexes is not very convenient in the case of the complexes we describe because, apart from the difficulty of obtaining the starting complexes $\left[\operatorname{PtIR}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, four steps are required starting from the $\mathrm{Pt}-\mathrm{Hg}$ species, leading to lower overall yields. In addition the method gives only trans isomers.

The cis-formate complexes were readily obtained in good yield by the reaction of the compounds cis-[(PPh $\left.)_{2} \mathrm{RPtHgR}\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{Cl}_{5} ; 2,3,4,6-\mathrm{C}_{6} \mathrm{HCl}_{4} ; 2,3,4,5-\mathrm{C}_{6} \mathrm{HCl}_{4}\right.$; $2,5-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$) with formic acid:
$c i s-\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{RPtHgR}\right]+\mathrm{HCO}_{2} \mathrm{H} \rightarrow c i s-\left[\mathrm{Pt}(\mathrm{OCHO}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right]+\mathrm{Hg}+\mathrm{RH}$
The cleavage of $\mathrm{Pt}-\mathrm{Hg}$ honds by trifluoroacetic acid is known but the reaction with formic acid seems not to have been observed previously. The latter offers a direct method for the preparation of formato complexes with cis configurations as shown by NMR spectroscopy.

We have observed that isomerization of these cis-compounds to the corresponding trans-[$\left.\mathrm{Pt}(\mathrm{OCHO}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ species takes place in benzene at $50^{\circ} \mathrm{C}$. In contrast, the analogous compounds with $\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}$ show little tendency to isomerize; thus treatment of cis- $\left[\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with AgClO_{4} and NaOCHO gives exclusively cis- $\left[\mathrm{Pt}(\mathrm{OCHO})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ which does not isomerise when its benzene solution is

Fig. 1. Plot of ${ }^{1} J\left(\mathbf{P}^{\mathrm{b}}-\mathrm{Pt}\right)$ against ${ }^{1} J\left(\mathrm{P}^{\mathrm{a}}-\mathrm{Pt}\right)$ for cis- $\left[\mathrm{Pt}(\mathrm{OCHO}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ complexes $(v=0.986)$. (1) $\mathrm{R}=2,5-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$; (2) $\mathrm{R}=2,3,4,5-\mathrm{C}_{6} \mathrm{HCl}_{4}$; (3) $\mathrm{R}=2,3,4,6-\mathrm{C}_{6} \mathrm{HCl}_{4}$; (4) $\mathrm{R}=\mathrm{C}_{6} \mathrm{Cl}_{5}$; (5) $\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}$.
kept at $50^{\circ} \mathrm{C}$. The compound trans- $\left[\mathrm{Pt}(\mathrm{OCHO})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ can only be obtained from trans- $\left[\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$. This behaviour was not unexpected, since it is known that cis- $\left[\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ only isomerizes when it is heated in the solid phase [6] and this can be explained by taking account of the smaller size of $\mathrm{C}_{6} \mathrm{~F}_{5}$ than of the polychlorophenyl ligands.

The analytical data and decomposition temperatures for these complexes are given in Table 1. All the compounds are white solids. They are readily soluble in dichloromethane, chloroform, benzene, or acetone, but only sparingly soluble in ethanol and hexane. Their IR spectra show bands from the coordinated ligands which are in accord with published data [7,8]. The IR spectrum in the $\boldsymbol{\nu (C O})_{2}$ region is indicative of monodentate coordination of formate to the metal [9]; it involves a strong $\nu(\mathrm{C}=\mathrm{O})$ band at $1650-1640 \mathrm{~cm}^{-1}$ and a somewhat weaker $\nu(\mathrm{C}-\mathrm{O})$ band at $1270-1260 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectra show the signal from the proton formate only for three of the compounds (see Table 3). For the others, the resonance

Fig. 2. Plot of ${ }^{1} J(\mathrm{P}-\mathrm{Pt})$ for trans-[$\left.\mathrm{Pt}(\mathrm{OCHO}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ against ${ }^{1} J\left(\mathrm{P}^{\mathrm{a}}-\mathrm{Pt}\right)$ for cis-[$\left.\mathrm{Pt}(\mathrm{OCHO}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ ($v=0.975$). (1) $\mathrm{R}=2,5-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$; (2) $\mathrm{R}=2,3,4,5-\mathrm{C}_{6} \mathrm{HCl}_{4}$; (3) $\mathrm{R}=2,3,4,6-\mathrm{C}_{6} \mathrm{HCl}_{4}$; (4) $\mathrm{R}=\mathrm{C}_{6} \mathrm{Cl}_{5}$; (5) $R=\mathrm{C}_{6} \mathrm{~F}_{5}$.
is obscured by the intense signals of the PPh_{3} aromatic hydrogen. From the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra the cis or trans configuration can be unambiguously assigned and the spectroscopic parameters given in Table 3 have been derived. For the trans compounds the spectra consist of a singlet with ${ }^{195} \mathrm{Pt}$ satellites, and those for the cis compounds show two groups of signals arising from the two non-equivalent phosphorus atoms. The assignment of each group of signals is based on the ${ }^{1} J(\mathrm{P}-\mathrm{Pt})$ values; the larger value corresponds to the phosphorus atom trans to the formate group, in accord with the smaller trans-influence of this group compared, with those of ligands R . When R is $\mathrm{C}_{6} \mathrm{~F}_{5}$, the assignment can also be based on the fact that the P atom trans to $\mathrm{C}_{6} \mathrm{~F}_{5}$ appears as a broad signal due to coupling with F nuclei.

From the $J(\mathbf{P}-\mathrm{Pt})$ parameters for the compounds cis- $\left[\mathrm{Pt}(\mathrm{OCHO}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ the following sequence of trans-influence of R can be derived: $\mathrm{C}_{6} \mathrm{~F}_{5} \ll \mathrm{C}_{6} \mathrm{Cl}_{5}<2,3,4,6$ $\mathrm{C}_{6} \mathrm{HCl}_{4} \ll 2,3,4,5-\mathrm{C}_{6} \mathrm{HCl}_{4}<2,5-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$. This trans-influence series is consistent with the assumption that the major contribution ot $J(\mathrm{P}-\mathrm{Pt})$ is the Fermi contact term. Thus, an increase in the electron-withdrawing ability of \mathbf{R} increases the ability of the $6 s$ orbital of platinum to interact with the trans-phosphorus atom and the magnitude of ${ }^{1} J(\mathrm{P}-\mathrm{Pt})$. The possibility cannot be excluded that steric factors may be

TABLE 1
ANALYTICAL DATA FOR $\left[\mathrm{Pt}(\mathrm{OCHO}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ COMPLEXES

cis-R	Decomposition temperature $\left({ }^{\circ} \mathrm{C}\right)$	Analysis (Found (calcd.) (\%))		
		C	H	Cl
$\mathrm{C}_{6} \mathrm{Cl}_{5}$	130	$\begin{aligned} & \hline 51.9 \\ & (50.92) \end{aligned}$	$\begin{gathered} 3.0 \\ (3.06) \end{gathered}$	$\begin{gathered} 17.0 \\ (17.49) \end{gathered}$
2,3,4,6- $\mathrm{C}_{6} \mathrm{HCl}_{4}$	138	$\begin{gathered} 52.7 \\ (52.72) \end{gathered}$	$\begin{gathered} 3.1 \\ (3.27) \end{gathered}$	$\begin{gathered} 14.6 \\ (14.49) \end{gathered}$
2,3,4,5-C6 HCl_{4}	150	$\begin{gathered} 52.7 \\ (52.72) \end{gathered}$	$\begin{gathered} 3.0 \\ (3.27) \end{gathered}$	$\begin{gathered} 14.5 \\ (14.49) \end{gathered}$
2,5-C6 $\mathrm{H}_{3} \mathrm{Cl}_{2}$	132	$\begin{gathered} 56.0 \\ (56.71) \end{gathered}$	$\begin{gathered} 3.7 \\ (3.74) \end{gathered}$	$\begin{gathered} 8.1 \\ (7.79) \end{gathered}$
$\mathrm{C}_{6} \mathrm{~F}_{5}$	152	$\begin{gathered} 53.3 \\ (55.42) \end{gathered}$	$\begin{gathered} 3.3 \\ (3.35) \end{gathered}$	-
trans-R				
$\mathrm{C}_{6} \mathrm{Cl}_{5}$	172	$\begin{gathered} 50.8 \\ (50.92) \end{gathered}$	$\begin{gathered} 3.0 \\ (3.06) \end{gathered}$	$\begin{aligned} & 17.0 \\ & (17.49) \end{aligned}$
2,3,4,6-C6 HCl_{4}	180	$\begin{gathered} 52.7 \\ (52.72) \end{gathered}$	$\begin{gathered} 3.3 \\ (3.27) \end{gathered}$	$\begin{gathered} 14.4 \\ (14.49) \end{gathered}$
2,3,4,5-C6 HCl_{4}	168	$\begin{gathered} 52.0 \\ (52.72) \end{gathered}$	$\begin{gathered} 3.1 \\ (3.27) \end{gathered}$	$\begin{gathered} 15.0 \\ (14.49) \end{gathered}$
2,5-C6 $\mathrm{H}_{3} \mathrm{Cl}_{2}$	135	$\begin{gathered} 54.9 \\ (56.71) \end{gathered}$	$\begin{aligned} & 3.7 \\ & (3.74) \end{aligned}$	$\begin{gathered} 7.1 \\ (7.79) \end{gathered}$
$\mathrm{C}_{6} \mathrm{~F}_{5}$	170	$\begin{gathered} 55.4 \\ (55.42) \end{gathered}$	$\begin{gathered} 3.2 \\ (3.35) \end{gathered}$	-

responsible for the large difference in the ${ }^{1} J(\mathrm{P}-\mathrm{Pt})$ values for $\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}$ and $\mathrm{C}_{6} \mathrm{Cl}_{5}$, since their electron-withdrawing abilities are similar. Whereas the trans influence has been well established, the cis influence is not well understood. In order to compare the cis and trans influences in the compounds cis- and trans$\left[\mathrm{Pt}(\mathrm{OCHO}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right.$], we studied the values of $J(\mathrm{P}-\mathrm{Pt})$, and noted the following features:
(a) For cis-[$\left.\mathrm{Pt}(\mathrm{OCHO}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ the cis influence of R is smaller than its trans influence in all cases, and operates in the opposite direction, as can be seen from the inverse linear correlation between ${ }^{1} J\left(\mathbf{P}^{\mathbf{a}}-\mathrm{Pt}\right)$ and ${ }^{1} J\left(\mathbf{P}^{\mathbf{b}}-\mathbf{P t}\right)\left(\mathbf{P}^{\mathbf{a}}=\mathbf{P}\right.$ cis to $\mathbf{R} ; \mathbf{P}^{\mathbf{b}}=\mathbf{P}$ trans to \mathbf{R}). Similar behaviour is found for the compounds cis-[PtIR $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$.
(b) The influences of the R ligands which act in the same direction have similar effects for cis- and trans- $\left[\mathrm{Pt}(\mathrm{OCHO}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, as can be seen from the direct linear

TABLE 2
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR DATA FOR COMPLEXES $\left[\operatorname{PtIR}\left(\mathrm{PPh}_{3}\right)_{2}\right]{ }^{a}$

R	$\delta\left(\mathrm{P}^{\mathrm{a}}\right)$	${ }^{1} J\left(\mathrm{P}^{\mathrm{a}}-\mathrm{Pt}\right)$	$\delta\left(\mathrm{P}^{\mathrm{b}}\right)$	${ }^{1} J\left(\mathrm{P}^{\mathrm{b}}-\mathrm{Pt}\right)$	${ }^{2} J\left(\mathrm{P}^{\mathrm{a}}-\mathrm{P}^{\mathrm{b}}\right)$	$\%^{b}$	$\delta(\mathrm{P})$	${ }^{1} J(\mathrm{P}-\mathrm{Pt})$	$\%^{c}$
$\mathrm{C}_{6} \mathrm{Cl}_{5}$	-129.2	3953	-130.7	2101	18	100			
$2,3,4,6-\mathrm{C}_{6} \mathrm{HCl}_{4}$	-129.1	3971	-130.5	2063	18	100			
$2,3,4,5-\mathrm{C}_{6} \mathrm{HCl}_{4}$	-126.8	4010	-129.4	1930	17	62	-122.1	2877	38
$2,5-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$	-126.2	4071	-128.6	1860	18	36	-121.2	2930	64

$\overline{a^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \text { NMR in } \mathrm{CHCl}_{3} \text {, reference } \mathrm{P}(\mathrm{OMe})_{3}, J \text { in } \mathrm{Hz} ; \delta \text { in } \mathrm{ppm} ; \mathrm{P}^{\mathrm{a}} \text { is cis and } \mathrm{P}^{\mathrm{b}} \text { is trans to } \mathrm{R} \text {. }{ }^{b} \text { cis }}$ isomer percentage. ${ }^{\text {c }}$ trans isomer percentage.

TABLE 3
NMR DATA FOR COMPLEXES $\left[\mathrm{Pt}(\mathrm{OCHO}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right]{ }^{a}$

cis-R	$\delta\left(\mathrm{P}^{\mathrm{a}}\right)$	${ }^{1} J\left(\mathrm{P}^{\mathrm{a}}-\mathrm{P}^{\mathrm{b}}\right)$	$\delta\left(\mathrm{P}^{\mathrm{b}}\right)$	${ }^{1} J\left(\mathrm{P}^{\mathrm{b}}-\mathrm{Pt}\right)$	${ }^{2} J\left(\mathrm{P}^{\mathrm{a}}-\mathrm{P}^{\mathrm{b}}\right)$	$\delta(\mathrm{H})$	${ }^{4} J\left(\mathrm{H}-\mathrm{P}^{\mathrm{a}}\right)$	${ }^{4} J\left(H-\mathrm{P}^{\mathrm{b}}\right)$
$\mathrm{C}_{6} \mathrm{Cl}_{5}$	-133.0	4098	-122.9	2114	18			
2,3,4,6-C6 HCl_{4}	-133.1	4121	-122.1	2075	18			
2,3,4,5-C $\mathrm{C}_{6} \mathrm{IICl}_{4}$	-131.4	4182	-120.8	1934	16	8.1	13.0	1.0
2,5- $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$	-130.8	4249	-119.7	1859	16	7.9	11.5	1.0
$\mathrm{C}_{6} \mathrm{~F}_{5}$	-132.2	3936	-120.4	2287	18	7.9	14.0	b
trans-R								
$\mathrm{C}_{6} \mathrm{Cl}_{5}$	-121.0	3043						
2,3,4,6-C6 HCl_{4}	-121.6	3049						
2,3,4,5-C6 HCl_{4}	-120.0	3082						
2,5- $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$	-118.7	3113						
$\mathrm{C}_{6} \mathrm{~F}_{5}$	-120.4	2871						

correlation between the ${ }^{1} J\left(\mathrm{P}^{\mathrm{a}}-\mathrm{Pt}\right)$ values for cis compounds and the ${ }^{1} J(\mathrm{P}-\mathrm{Pt})$ values for trans compounds.

Experimental

Elemental analyses were carried out at the "Institut de Quimica Bio-Orgànica del Centre d'Investigacions i Desenvolupament del Consell Superior d'Investigacions Cientifiques de Barcelona".

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were obtained on a Bruker FT-80-SY spectrometer and the ${ }^{1} \mathrm{H}$ NMR spectra on a Varian XL-200FT spectrometer. IR spectra were recorded on a Beckman Acculab 4 spectrometer.

Starting materials

The compounds cis-[($\left.\left.\mathrm{PPh}_{3}\right)_{2} \mathrm{RPtHgR}\right],\left[\mathrm{Pt}^{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and cis- and trans- $\left[\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ were prepared by published methods $[4,6]$.

Preparation of $\left[\operatorname{PtIR}\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{Cl}_{5} ; 2,3,4,6-\mathrm{C}_{6} \mathrm{HCl}_{4} ; 2,3,4,5-\mathrm{C}_{6} \mathrm{HCl}_{4}, 2,5-\right.$ $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$)

An excess of KI was added to a solution of 1.0 mmol of $\left[\mathrm{Pt}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in 30 ml of acetone, and the mixture was stirred for 4 h . The solution was then evaporated to dryness and the residue recrystallized from dichloromethane/methanol; yield 80%.

Preparation of trans-[Pt $\left.(\mathrm{OCHO}) \mathrm{R}\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{Cl}_{5} ; 2,3,4,6-\mathrm{C}_{6} \mathrm{HCl}_{4} ; 2,3,4,5-\right.$ $\mathrm{C}_{6} \mathrm{HCl}_{4} ; 2,5-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$)

A solution of 1.2 mmol of AgClO_{4} in 20 ml of methanol was added to a solution of 1.0 mmol of $\left[\mathrm{PtIR}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in 20 ml of CHCl_{3}. The mixture was stirred for 24 h , and the AgI was then filtered off and the solution evaporated to dryness, the residue was extracted with CHCl_{3}, and the extract was treated with a solution of 5.5 mmol of NaOCHO in 20 ml of methanol. The mixture was stirred for 6 h than evaporated
to dryness, and the residue recrystallized from dichloromethane/methanol; yield 60-70\%.

Preparation of cis- and trans-[$\left.\mathrm{Pt}(\mathrm{OCHO})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$
These were prepared from cis- and trans- $\left[\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$, respectively, by the method described above.

Preparation of cis-[Pt $\left.(\mathrm{OCHO}) R\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{Cl}_{5} ; 2,3,4,6-\mathrm{C}_{6} \mathrm{HCl}_{4} ; 2,3,4,5-\right.$ $\mathrm{C}_{6} \mathrm{HCl}_{4} ; 2,5-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$)

These compounds were prepared by adding $\mathrm{HCOOH}(4 \mathrm{ml})$ to a solution of the appropriate $\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{RPtHgR}\right](1.0 \mathrm{mmol})$ in benzene (25 ml) which caused immediate separation of mercury. The solution was filtered then concentrated to dryness, and the residue washed with hexane then recrystallized from benzene/ hexane; yield 70%.

References

1 A. Behr, in W. Keim (Ed.), Catalysis in C Chemistry, Reidel, Dordrecht, 1983, p. 169.
2 D.J. Darensbourg and R.A. Kudaroski, Adv. Organomet. Chem., 22 (1983) 129.
3 D.J. Darensbourg, M.B. Fischer, R.E. Schmidt Jr., and B.J. Baldwin, J. Am. Chem. Soc., 103 (1981) 1297.

4 O. Rossell, J. Sales and M. Seco, J. Organomet. Chem., 236 (1982) 415.
5 D. Carmona, S. Chaloupka, J. Jans, R. Thouvenot and L.M. Venanzi, J. Organomet. Chem., 275 (1984) 303.

6 D.T. Rosevear and F.G.A. Stone, J. Chem. Soc., (1965) 5275.
7 R.J. Bertino, G.B. Deacon and F.B. Taylor, Aust. J. Chem., 7 (1968) 53.
8 G.B. Deacon and J.H.S. Green, Spectrochim. Acta, Part A, 24 (1968) 845.
9 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1978, p. 231.

